NOVEL MACROCYCLES FROM 2,5-DIMETHYLTHIOPHEN AND RELATED SYSTEMS O. METH-COHN

Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, Lancs., England

(Received in UK 20 November 1972; accepted for publication 6 December 1972)

The action of formaldehyde and strong acids on veratrole and various related compounds has been shown to give the tribenzocyclononene (1)^{\perp} together with small amounts of the analogous tetramer 2 .

(1)

Several workers³ have demonstrated unequivocally that the trimer exists solely in the 'crown' conformation and that this conformation is stable up to 200°. Thus the methylene protons are non-equivalent in the n.m.r. spectrum, showing geminal coupling of 14 Hz.

While repeating the literature $procedure^4$ for the preparation of the dithienylmethane (2a) by chloromethylation of 2,5-dimethylthiophen in the

(2)

presence of zinc chloride, we isolated by chromatographic work-up the reported products (the dimer (2a) and trimer (2b)) together with two further minor products. The first, m.p. $244-5^{\circ}$, formed in very small quantities as white needles from ethyl acetate and proved to be the cyclic trimer (3) on the basis

of analysis, n.m.r. (\mathcal{T} (CDCl₃): 7.73s(18H, Me's) and 6.46s(6H, CH₂'s)) and mass spectrum (M^+ , m/e 372.1036; C₂₁H₂₄S₃ requires 372.1041). The second, m.p. 190-3° (7%) was the linear tetramer (2c) as indicated by its analysis and mass spectrum (M^+ , m/e 484).

The cyclic trimer became the major product (42%) by a change of the reaction conditions. Thus an equimolar mixture of 2,5-dimethylthiophen and formaldehyde in acetic acid was added slowly dropwise to a refluxing acetic acid solution of zinc chloride containing a little mineral acid. After reaction the cooled solution was filtered and the precipitate sublimed under high vacuum to give the trimer (3) at 200° and a small quantity of the tetramer (4) at 300° (m.p. > 370°, M⁺, m/e 496.1384. $C_{28}H_{32}S_4$ requires 496.1387)

The cyclic trimer is surprisingly different from its benzenoid analogues (1) in its conformational mobility. Thus the methylene protons appear as a singlet in both chloroform and benzene solution and the signal is unchanged even at -60° indicating that a rapid conformational flipping occurs. This mobility is perhaps a reflection of the wider angle distended by the 3,4-thiophenic bonds (68°) compared to that of the benzenoid system (60°) and the steric interaction of the methyl groups which would tend to favour a 'saddle' conformation.

Desulphurisation of thiophens often leads to a useful synthesis of hydrocarbons. When the trimer (3) was boiled with an excess of Raney nickel in benzene, virtually quantitative conversion to 1,2,4,5,7,8-hexaethylcyclononane (5) was observed (b.p. $142-5^{\circ}/1.3$ mm; Kugel Rohr) suggesting that this approach

with suitable thiophens could offer a useful synthesis of substituted mediumsize ring hydrocarbons.

Attempts to extend the cyclic oligomerisation to 2,5-dimethylpyrrole and 2,5-dimethylfuran were without success even when tetrahydrofuran replaced the acetic acid and only intractable tars were formed. However, from 1-benzyl-2,5-dimethylpyrrole⁵ was isolated the unstable dimer (6), m.p. 214-6°(d) [N.m.r. \mathcal{T} (CDCl₃): 7.92s(12H, Me's), 6.51s(4H, C-CH₂-C's), 5.06s(4H, N-CH₂'s) 3.18m(2H, Ar) and 2.88(3H, Ar). M.s.; M⁺, m/e 394].

References

A. S. Lindsey, <u>J. Chem. Soc</u> ., 1965, 1685 and refs cited therein.
H. Erdtman, F. Haglid and R. Ryhage, Acta Chem. Scand., 1964, 18, 1249.
(a) B. Miller and B. D. Gesner, <u>Tetrahedron Letters</u> , 1965, 3351.
(b) R. C. Cookson, B. Halton and I. D. R. Stevens, <u>J. Chem. Soc</u> . (B),
1968, 767.
(c) T. Sato, K. Uno and M. Kainosho, <u>J. C. S. Chem. Comm</u> ., 1972, 579.
Ya. L. Goldfarb and M. S. Kondakova, Bull. Acad. Sci. USSR, Div. Chem.
Sci. SSR (English Translation), 1956, 487.
S. J. Hazlewood et al., J. Proc. Roy. Soc. N.S.W., 1937, 71, 92.