NOVEL MACROCYCLES FROM 2,5-DIMETHYLTHIOPHEN AND RELATED SYSTEMS

> O. METH-COHN

Department of Chemistry and Applied Chemistry, University of Salford,
Salford M5 4WT, Lancs., England
(Received in UK 20 November 1972; ascepted for publication 6 December 1972)
The action of formaldehyde and strong acids on veratrole and various related compound: has been shown to give the tribenzocyclononene (1) ${ }^{1}$ together with small amounts of the analogous tetramer ${ }^{2}$.

(1)

Several workers ${ }^{3}$ have demonstrated unequivocally that the trimer exists solely in the 'srown' conformation and that this conformation is stable up to 200°. Thus the methylene protons are non-equivalent in the $n . m . r$. spectrum, showing geminal coupling of 14 Hz .

While repeating the literature procedure ${ }^{4}$ for the preparation of the dithienylmethane (2a) by chloromethylation of 2,5-dimethylthiophen in the

$$
\begin{aligned}
\mathrm{a} ; & \mathrm{n}=1 \\
\mathrm{~b} ; & \mathrm{n}=2 \\
\mathrm{c} ; & \mathrm{n}=3
\end{aligned}
$$

(2)
presence of zinc chloride, we isolated by chromatographic work-up the reported products (the dimer (2a) and trimer (2b)) together with two further minor products. The first, m.p. $244-5^{\circ}$, formed in very small quantities as white needles from ethyl acetate and proved to be the cyclic trimer (3) on the basis

(3)

(4)
of analysis, n.m.r. ($\tau\left(\mathrm{CDCl}_{3}\right): 7.73 \mathrm{~s}\left(18 \mathrm{H}, \mathrm{Me}{ }^{\prime} \mathrm{s}\right)$ and $6.46 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}\right)$) and mass spectrum (M^{+}, m/e $372.1036 ; C_{21} H_{24} S_{3}$ requires 372.1041). The second, m.p. $190-3^{\circ}(7 \%)$ was the linear tetramer (2c) as indicated by its analysis and mass spectrum ($M^{+}, m / e 484$).

The cyclic trimer became the major product (42%) by a change of the reaction conditions. Thus an equimolar mixture of 2,5 -dimethylthiophen and formaldehyde in acetic acid was added slowly dropwise to a refluxing acetic acid solution of zinc chloride containing a little mineral acid. After reaction the cooled solution was filtered and the precipitate sublimed under high vacuum to give the trimer (3) at 200° and a small quantity of the tetramer (4) at 300° (m.p. $>370^{\circ}, \mathrm{M}^{+}$, m/e 496.1384. $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~S}_{4}$ requires 496.1387)

The cyclic trimer is surprisingly different from its benzenoid analogues (1) in its conformational mobility. Thus the methylene protons appear as a singlet in both chloroform and benzene solution and the signal is unchanged even at -60° indicating that a rapid conformational flipping occurs. This mobility is perhaps a reflection of the wider angle distended by the 3,4thiophenic bonds (68°) compared to that of the benzenoid system (60°) and the steric interaction of the methyl groups which would tend to favour a saddle' conformation.

Desulphurisation of thiophens often leads to a useful synthesis of hydrocarbons. When the trimer (3) was boiled with an excess of Raney nickel in benzene, virtually quantitative conversion to $1,2,4,5,7,8$-hexaethylcyclononane (5) was observed (b.p. $142-5^{\circ} / 1.3 \mathrm{~mm}$; Kugel Rohr) suggesting that this approach

(5)

(6)
with suitable thiophens could offer a useful synthesis of substituted mediumsize ring hydrocarbons.

Attempts to extend the cyclic oligomerisation to 2,5-dimethylpyrrole and 2,5-dimethylfuran were without success even when tetrahydrofuran replaced the acetic acid and only intractable tars were formed. However, from 1-benzyl-2,5-dimethylpyrrole ${ }^{5}$ was isolated the unstable dimer (6), m.p. 214-6 ${ }^{\circ}$ (d)
 $3.18 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ar})$ and $2.88(3 \mathrm{H}, \mathrm{Ar})$. M.s.; $\left.\mathrm{M}^{+}, \mathrm{m} / \mathrm{e} 394\right]$.

References

1. A. S. Lindsey, J. Chem. Soc., 1965, 1685 and refs cited therein.
2. H. Erdtman, F. Haglid and R. Ryhage, Acta Chem. Scand., 1964, 18, 1249.
3. (a) B. Miller and B. D. Gesner, Tetrahedron Letters, 1965, 3351.
(b) R. C. Cookson, B. Halton and I. D. R. Stevens, J. Chem. Soc. (B), 1968, 767.
(c) T. Sato, K. Uno and M. Kainosho, J. C. S. Chem. Comm., 1972, 579.
4. Ya. L. Goldfarb and M. S. Kondakova, Bull. Acad. Sci. USSR, Div. Chem. Sci. SSR (English Translation), 1956, 487.
5. S. J. Hazlewood et al., J. Proc. Roy. Soc. N.S.W., 1937, 71, 92.
